Solution

PRE-BOARD 2023-24

Class 10 - Mathematics

Section A

1. (a) equal

Explanation: If we assume that a and b are equal and consider $\mathrm{a}=\mathrm{b}=\mathrm{k}$
Then,
HCF (a, b) $=\mathrm{k}$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=\mathrm{k}$
2.
(b) $x^{2}-3 x-10=0$

Explanation: Sum of the roots $=5+(-2)=3$, product of roots $=5 \times(-2)=-10$.
$\therefore \mathrm{x}^{2}$ - (sum of roots) $\mathrm{x}+$ product of roots $=0$.
Hence, $x^{2}-3 x-10=0$.
3.
(c) $\tan ^{2} \mathrm{~A}$

Explanation: $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\tan ^{2} A}{1+\frac{1}{\tan A}}$
$=\frac{1+\tan ^{2} A}{\frac{\tan ^{2} A+1}{\tan ^{2} A}}$
$=\left(1+\tan ^{2} A\right)\left(\frac{\tan ^{2} A}{\tan ^{2} A+1}\right)=\tan ^{2} A$
Hence, the correct choice is $\tan ^{2} \mathrm{~A}$.
4.
(d) $\frac{1}{9}$

Explanation: The number of possible outcomes when two dice are thrown is 36 .
Now, the possible outcomes of getting a product of 12 are
$\{(2,6),(3,4),(4,3),(6,2)\}$, which means the number of favourable outcome is 4 .
Required probability $=\frac{4}{36}=\frac{1}{9}$
5. (a) $\frac{5}{7}$

Explanation: No. of days in a leap year $=366$
No. of Mondays = 52
Extra days $=366-52 \times 7$
= 366-364 = 2
\therefore Remaining days in the week $=7-2=5$
\therefore Probability of being 52 Mondays in the leap
year $=\frac{5}{7}$
6.
(c) A is true but R is false.

Explanation: Here, reason is not true.
$\sqrt{9}= \pm 3$, which is not an irrational number.
A is true but R is false.
7. (a) Both A and R are true and R is the correct explanation of A .

Explanation: Both are correct. Reason is the correct explanation.
Assertion,
$\mathrm{a}_{\mathrm{n}}=7-4 \mathrm{n}$
$\mathrm{d}=\mathrm{a}_{\mathrm{n}-1}-\mathrm{a}_{\mathrm{n}}$
$=7-4(n+1)-(7-4 n)$

$$
=7-4 n-4-7+4 n=-4
$$

8. (a) 3

Explanation: The number of zeroes is 3 as the graph given in the question intersects the x -axis at 3 points.
9.
(d) 10

Explanation: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{D}=\angle \mathrm{B}$ \{Corresponding angle $\}$
$\angle \mathrm{E}=\angle \mathrm{C}$ \{Corresponding angle $\}$
$\therefore \triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$ (by A A Similarity)
$\frac{A D}{A B}=\frac{D E}{B C}$
$\frac{2}{5}=\frac{4}{X}$
$\mathrm{X}=\frac{5 \times 4}{2}=10$
$=10 \mathrm{~cm}$
10.
(d) (x, y)

Explanation: $\mathrm{AB}=\sqrt{(2 x-0)^{2}+(0-2 y)^{2}}$
$=\sqrt{4 x^{2}+4 y^{2}}=2 \sqrt{x^{2}+y^{2}}$ units
$\mathrm{BO}=\sqrt{(0-2 x)^{2}+(0-0)^{2}}$
$=\sqrt{4 x^{2}}=2 \mathrm{x}$ units
$\mathrm{AO}=\sqrt{(0-0)^{2}+(0-2 y)^{2}}$
$=\sqrt{4 y^{2}}=2 y$ units
Now, $\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2} \Rightarrow\left(2 \sqrt{x^{2}+y^{2}}\right)^{2}=(2 x)^{2}+(2 y)^{2}$
$\Rightarrow 4\left(x^{2}+y^{2}\right)=4\left(x^{2}+y^{2}\right)$
Therefore, triangle AOB is an isosceles right-angled triangle.
Since the coordinate of the point which is equidistant from the three vertices of a right-angled triangle is the coordinates of mid-point of its hypotenuse.
\therefore Mid-point of $\mathrm{AB}=\left(\frac{0+2 x}{2}, \frac{2 y+0}{2}\right)=(\mathrm{x}, \mathrm{y})$

11.
(b) 30°

Explanation: In the given figure, PA and PB are two tangents to the circle with centre O .
$\angle \mathrm{APB}=60^{\circ}$
To find $\angle \mathrm{OAB}$,Join OB .

PAOB is a cyclic quadrilateral.
$\angle \mathrm{APB}+\angle \mathrm{AOB}=180^{\circ}$
OA is radius and PA is tangent
$\mathrm{OA} \perp \mathrm{AP} \Rightarrow \angle \mathrm{OAP}=90^{\circ}$
$\mathrm{PA}=\mathrm{PB}$ (Tangents to the circle)
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$
But, $\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}=\frac{120}{2}=60^{\circ}$
$\angle \mathrm{OAB}=90^{\circ}-60^{\circ}=30^{\circ}$
12.
(d) 27

Explanation:

Class	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
Frequency	4	5	18	20	17	7	4
Cumulative Frequency	4	9	27	47	64	71	75

Therefore, the number of athletes who completed the race in less than 125 seconds is 27.

Section B

13. -21

Explanation:
The given polynomial $f(x)=2 x^{2}+x+k$
If 3 is zero of $f(x)$ then $f(3)=0$
i,e. $2(3)^{2}+3+k=0$
$\Rightarrow 2 \times 9+3+\mathrm{k}=0$
$\Rightarrow 18+3+\mathrm{k}=0$
$\therefore 21+\mathrm{k}=0$
$\Rightarrow \mathrm{k}=-21$
Thus, for $\mathrm{k}=-21$, 3 is a zero of the polynomial.
14. 19

Explanation:
Here it is given an AP
where $\mathrm{a}=72$ and $\mathrm{d}=-4$
Suppose the $\mathrm{n}^{\text {th }}$ term $=0$
$T_{n}=a+(n-1) d=0$
So $72+(n-1)(-4)=0$
$72-4 n+4=0$
$-4 \mathrm{n}=-72-4=-76$
$n=\frac{-76}{-4}=19$
Hence, the $19^{\text {th }}$ term of the given AP is 0 .
15.5

Explanation:
According to question it is given that In $\triangle A B C$,
MN || AB
Therefore by Thale's theroem
$\frac{M C}{A C}=\frac{N C}{B C}$
$\Rightarrow \frac{M C}{A M+M C}=\frac{N C}{B C}$
$=\frac{x}{7.5}($ when $\mathrm{NC}=\mathrm{x} \mathrm{cm})$
$\Rightarrow x=\frac{2 \times 7.5}{6}$
$=\frac{15}{6}=2.5$
$\Rightarrow \mathrm{NC}=2.5 \mathrm{~cm}$

Hence, $\mathrm{BN}=\mathrm{BC}-\mathrm{NC}$
$=(7.5-2.5) \mathrm{cm}$
$=5 \mathrm{~cm}$
16. 29

Explanation:
Point $C(-1,2)$ divides internally the line segment $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$
Then, by section formula
$C=\left(\frac{3 \times x+4 \times 2}{3+4}, \frac{3 \times y+4 \times 5}{3+4}\right)$
$\Rightarrow(-1,2)=\left(\frac{3 x+8}{7}, \frac{3 y+20}{7}\right)$
$\Rightarrow \frac{3 x+8}{7}=-1$ and $\frac{3 y+20}{7}=2$
$\Rightarrow 3 x+8=-7$ and $3 y+20=14$
$\Rightarrow 3 x=-15$ and $3 y=-6$
$\Rightarrow x=-5$ and $y=-2$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=(-5)^{2}+(-2)^{2}=25+4=29$
17.28

Explanation:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of students	20	24	40	36	20
		f_{0}	f_{1}	f_{2}	

Modal class $=20-30$
$\mathrm{l}=20, \mathrm{f}_{1}=40, \mathrm{f}_{0}=24, \mathrm{f}_{2}=36, \mathrm{~h}=10$
Mode $=l+\frac{\left(f_{1}-f_{0}\right)}{2 f_{1}-f_{0}-f_{2}} \times h$
$=20+\frac{(40-24)}{2(40)-24-36} \times 10$
$=20+\frac{(40-24)}{80-24-36} \times 10$
$=20+\frac{16 \times 10}{20}$
$=20+\frac{160}{20}$
$=20+8$
$=28$
18. 60

Explanation:
Given,

Construction: Join OL
$\mathrm{OL} \perp \mathrm{RS}$.
Also OL = OM
$\therefore \angle \mathrm{OML}=\angle \mathrm{OLM}$
$\Rightarrow . \angle \mathrm{OLM}=30^{\circ}$
$\Rightarrow \angle \mathrm{RLM}=90^{\circ}-30^{\circ}=60^{\circ}$

Section C

19. Given, $p=a^{2} b^{3}$
and $q=a^{3} b$
$\operatorname{HCF}(p, q)=a^{2} b$
$\operatorname{LCM}(p, q)=a^{3} b^{3}$
$p q=a^{2} b^{3} \times a^{3} b=a^{5} b^{4}$
$\operatorname{LCM}(p, q) \times \operatorname{HCF}(p, q)=a^{3} b^{3} \times a^{2} b=a^{5} b^{4}----(2)$
From equation (1) and (2) We get
$\operatorname{LCM}(p, q) \times H C F(p, q)=p q$
20. We have to find the zeroes of the quadratic polynomial $4 y^{2}-15$ and verify the relationship between the zeroes and coefficient of polynomial.
Let $f(y)=4 y^{2}-15$
Compare it with the quadratic $a y^{2}+b y+c$.
Here, coefficient of $y^{2}=4$, coefficient of $\mathrm{y}=0$ and constant term $=-15$.
Now $4 y^{2}-15=(2 y)^{2}-(\sqrt{15})^{2}$
$=(2 y+\sqrt{15})(2 y-\sqrt{15})$
The zeroes of $\mathrm{f}(\mathrm{y})$ are given by $f(y)=0$
$\Rightarrow(2 y)+\sqrt{15})(2 y-\sqrt{15})=0$
$\Rightarrow(2 y)+\sqrt{15})=0$ or $(2 y-\sqrt{15})=0$
$\Rightarrow 2 y=-\sqrt{15}$ or $2 y=\sqrt{15}$
$\Rightarrow y=-\frac{\sqrt{15}}{2}$ or $y=\frac{\sqrt{15}}{2}$
Hence, the zeroes of the given quadratic polynomial are $-\frac{\sqrt{15}}{2}, \frac{\sqrt{15}}{2}$
Verification of relationship between zeroes and coefficients
Sum of the zeroes $=-\frac{\sqrt{15}}{2}+\frac{\sqrt{15}}{2}=\frac{-\sqrt{15}+\sqrt{15}}{2}=\frac{0}{2}=0=\frac{0}{4}$
$=\frac{\text { coefficient of } y}{\text { coefficient of } y^{2}}$
Product of zeroes $=-\frac{\sqrt{15}}{2} \times \frac{\sqrt{15}}{2}=-\frac{15}{4}=\frac{\text { constant term }}{\text { coefficient of } y^{2}}$.
21. Let S_{1} and S_{2} be two squares. Let the side of the square S_{2} be $x \mathrm{~cm}$ in length. Then,
the side of square S_{1} is $(x+4) c m$.
Therefore, area of square $S_{1}=(x+4)^{2}\left[\right.$ Because, Area $\left.=(\text { side })^{2}\right]$
and, Area of square $S_{2}=x^{2}$
It is given that
Area of square $S_{1}+$ Area of square $S_{2}=400 \mathrm{~cm}^{2}$
$\Rightarrow(\mathrm{x}+4)^{2}+\mathrm{x}^{2}=400$
$\Rightarrow\left(\mathrm{x}^{2}+8 \mathrm{x}+16\right)+\mathrm{x}^{2}=400$
$\Rightarrow 2 \mathrm{x}^{2}+8 \mathrm{x}-384=0$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}-192=0$
$\Rightarrow \mathrm{x}^{2}+16 \mathrm{x}-12 \mathrm{x}-192=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+16)-12(\mathrm{x}+16)=0$
$\Rightarrow(\mathrm{x}+16)(\mathrm{x}-12)=0$
$\Rightarrow \mathrm{x}=12$ or, $\mathrm{x}=-16$
As the length of the side of a square cannot be negative. Therefore, $x=12$.
Therefore, side of square $S_{1}=x+4=12+4=16 \mathrm{~cm}$ and, Side of square $S_{2}=12 \mathrm{~cm}$. Hence the side of square S_{1} and S_{2} are 16 cm and 12 cm respectively.
22. Let first term be a and common difference be d

Given $5^{\text {th }}$ term $=30$
$\Rightarrow \mathrm{a}+(5-1) \mathrm{d}=30$
$\Rightarrow \mathrm{a}+4 \mathrm{~d}=30$
and, $12^{\text {th }}$ term $=65$
$\Rightarrow \mathrm{a}+(12-1) \mathrm{d}=65$
$\Rightarrow \mathrm{a}+11 \mathrm{~d}=65$
Subtracting equation (i) from equation (ii)
$a+11 d-a-4 d=65-30$
$\Rightarrow 7 \mathrm{~d}=35$
$\Rightarrow d=\frac{35}{7}=5$
Putting value of d in equation (i)
$a+4 \times 5=30$
$\Rightarrow \mathrm{a}=30-20=10$
\therefore Sum of first 20 terms $=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{20}{2}[2 \times 10+(20-1) \times 5]$
$=10[20+95]$
$=10 \times 115$
$=1150$
23.

It is given that in $\triangle A B C, \mathrm{AD}$, the bisector of $\angle A$ meets BC in D .
To Prove $\frac{B D}{D C}=\frac{A B}{A C}$
Construction Draw $C E \| D A$, meeting BA produced at E .
Proof: Since $D A \| C E$, we have
$\angle 2=\angle 3 \quad$....(alternative interior angles)
and $\angle 1=\angle 4 \quad$..... (corresponding angles)
But, $\angle 1=\angle 2 \quad$....(Because AD is bisector of $\angle A$)
$\therefore \quad \angle 3=\angle 4$
So, $\mathrm{AE}=\mathrm{AC}$ [since sides opposite to equal sides of a triangle are equal].
Now, in $\triangle B C E$, we have $D A \| C E$.
Therefore by basic proportionality theorem, we have

$$
\begin{aligned}
& \frac{B D}{D C}=\frac{A B}{A E} \\
\Rightarrow \quad & \frac{B D}{D C}=\frac{A B}{A C}[\because \mathrm{AE}=\mathrm{AC}] \\
\text { or } \quad & \frac{B D}{D C}=\frac{A B}{A C}
\end{aligned}
$$

Hence proved
24. In equilateral $\triangle A B C$, coordinates of points A and B are $(2,0)$ and $(5,0)$ respectively.we have to find the co-ordinates of the other two vertices.

Let co-ordinates of C be (x, y)
Since $\mathrm{AC}^{2}=\mathrm{BC}^{2}$ (sides of equilateral triangle)
$(x-2)^{2}+(y-0)^{2}=(x-5)^{2}+(y-0)^{2}$
or, $x^{2}+4-4 x+y^{2}=x^{2}+25-10 x+y^{2}$
or, $6 x=21$
$\mathrm{x}=\frac{7}{2}$
And $(x-2)^{2}+(y-0)^{2}=9$
or, $\left(\frac{7}{2}-2\right)^{2}+y^{2}=9$
or, $\frac{9}{4}+y^{2}=9$
or, $y^{2}=\frac{27}{4}=\frac{3 \sqrt{3}}{2}$
Hence, $\mathrm{C}=\left(\frac{7}{2}, \frac{3 \sqrt{3}}{2}\right)$
25. Given radius of hemispherical ends $=18 \mathrm{~cm}$

Height of body $(\mathrm{h}-2 \mathrm{r})=108-2(18)=108-36=72 \mathrm{~cm}$

Curved surface area of cylinder $=2 \pi r$
Let S be the total surface area of the solid. Then,
S = Curved surface area of the cylinder + Surface areas of hemispherical end

$$
\begin{aligned}
& \Rightarrow \quad S=\left(2 \pi r h+2 \times 2 \pi r^{2}\right) \mathrm{cm}^{2} \\
& \Rightarrow \quad S=\left(2 \pi r h+4 \pi r^{2}\right) \mathrm{cm}^{2} \\
& \Rightarrow \quad S=2 \pi r(h+2 r) \mathrm{cm}^{2} \\
& \Rightarrow S=2 \times \frac{22}{7} \times 18 \times(72+36) \mathrm{cm}^{2} \quad[\therefore \mathrm{r}=18 \mathrm{~cm}, \mathrm{~h}=72 \mathrm{~cm}] \\
& \Rightarrow \quad S=2 \times \frac{22}{7} \times 18 \times 108 \mathrm{~cm}^{2}=12219 \mathrm{~cm}^{2}
\end{aligned}
$$

Rate of polishing $=7$ paise per sq. cm .
\therefore Cost of polishing $=\operatorname{Rs}\left(12219.42 \times \frac{7}{100}\right)=$ Rs. 885.36
26. We have

Class interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{1}$
$0-20$	5	10	50
$20-40$	8	30	240
$40-60$	x	50	50 x
$60-80$	12	70	840
$80-100$	7	90	630
$100-120$	8	110	880
Total	$\Sigma f_{i}=40+x$		$\Sigma f_{i} x_{i}=2640+50 x$

Here, $\Sigma f_{i} x_{i}=2640+50 x, \Sigma f_{i}=40+x, \bar{X}=62.8$
$\therefore \quad \operatorname{Mean}(\bar{X})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$
$\Rightarrow \quad 62.8=\frac{2640+50 x}{40+x}$
$\Rightarrow 2512+62.8 \mathrm{x}=2640+50 \mathrm{x}$
$\Rightarrow 62.8 \mathrm{x}-50 \mathrm{x}=2640-2512$
$\Rightarrow 12.8 \mathrm{x}=128$
$\therefore \quad x=\frac{128}{12.8}=10$
Hence, the missing frequency is 10
27. AB is a chord of length 9.6 cm of a circle with centre O and radius 6 cm .

The tangents at A and B intersect at P .
CONSTRUCTION : Join OP and OA. Let OP and AB intersect at M.
Let $\mathrm{PA}=\mathrm{x} \mathrm{cm}$ and $\mathrm{PM}=\mathrm{ycm}$.
Now, $P A=P B$
and OP is the bisector of $\angle A P B[\because$ two tangents to a circle from an external point are equally inclined to the line segment
joining the centre to that point.
Also, $O P \perp A B$ and OP bisects AB at $\mathrm{M}[\because \mathrm{OP}$ is the right bisector of AB$]$
$\therefore \mathrm{AM}=\mathrm{MB}=\frac{9.6}{2} \mathrm{~cm}$
$=4.8 \mathrm{~cm}$.
In right $\triangle A M O$, we have
$O A=6 \mathrm{~cm}$
and $A M=4.8 \mathrm{~cm}$.
$\therefore \mathrm{OM}=\sqrt{O A^{2}-A M^{2}}$
$=\sqrt{6^{2}-4.8^{2}}$
$=\sqrt{12.96}$
$=3.6 \mathrm{~cm}$.
In right $\triangle P A O$, we have
$\mathrm{AP}^{2}=\mathrm{PM}^{2}+\mathrm{AM}^{2}$
$\Rightarrow x^{2}=y^{2}+(4.8)^{2}$
$\Rightarrow \quad x^{2}=y^{2}+23.04 \ldots$..(i)
In right $\triangle P A O$, we have
$\mathrm{OP}^{2}=\mathrm{PA}^{2}+\mathrm{OA}^{2}$ [Note $\angle P A O=90^{\circ}$, since AO is the radius at the point of contact]
$\Rightarrow \quad(y+3.6)^{2}$
$=x^{2}+6^{2}$
$\Rightarrow \quad y^{2}+7.2 y+12.96$
$=x^{2}+36$
$\Rightarrow 7.2 y=46.08$ [using (i)]
$\Rightarrow \quad y=6.4 \mathrm{~cm}$
and
$x^{2}=(6.4)^{2}+23.04$
$=40.96+23.04=64$
$\Rightarrow x=\sqrt{64}=8$
$\therefore P A=8 \mathrm{~cm}$.

Section D

28. Read the text carefully and answer the questions:

A man is watching a boat speeding away from the top of a tower. The boat makes an angle of depression of 60° with the man's eye when at a distance of 200 m from the tower. After 10 seconds, the angle of depression becomes 45°.

(i) In $\triangle \mathrm{ABC}$
$\tan 60^{\circ}=\frac{A B}{B C}$
$\sqrt{3}=\frac{A B}{200}$
$\mathrm{AB}=200 \sqrt{3}$
Now, In $\triangle \mathrm{ABD}$
$\tan 45^{\circ}=\frac{A B}{B D}$
$1=\frac{200 \sqrt{3}}{B D}$
$\mathrm{BD}=200 \sqrt{3}$
$\therefore \mathrm{CD}=\mathrm{BD}-\mathrm{BC}$
$=200 \sqrt{3}-200$
$=200(\sqrt{3}-1)$
$=200 \times(1.732-1)$
$=200 \times 0.732$

$$
=146.4 \mathrm{~m}
$$

speed $=\frac{\text { distance }}{\text { time }}$
$=\frac{146.4}{10}$
$=14.64 \mathrm{~m} / \mathrm{s}$
Now,
speed $=14.64 \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}$
$=52.7$
$\approx 53 \mathrm{~km} / \mathrm{hr}$
(ii) In $\triangle \mathrm{ABD}$
$\tan 45^{\circ}=\frac{A B}{B D}$
$1=\frac{200 \sqrt{3}}{B D}$
$\mathrm{BD}=200 \sqrt{3} \mathrm{~m}$
$\therefore \mathrm{CD}=200 \sqrt{3}-200$
$=200(\sqrt{3}-1)$
$=200(1.732-1)$
$=200 \times 0.732$
$=146.4$
$\approx 147 \mathrm{~m}$
\therefore boat is at a distance of 147 m from its actual position.
(iii)In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{A B}{B C} \\
& \sqrt{3}=\frac{A B}{200} \\
& \mathrm{AB}=200 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Hence, height of tower $=200 \sqrt{3} \mathrm{~m}$
(iv)As boat moves away from the tower angle of depression decreases.

Section E

29. The given system of equations is
$0.4 x+0.3 y=1.7$
$0.7 x-0.2 y=0.8$
Multiplying both sides of (i) and (ii), by 10, get
$4 x+3 y=17$ \qquad
$7 x-2 y=8$ \qquad (iv)

From (iv), we get
$7 x=8+2 y$
$\Rightarrow x=\frac{8+2 y}{7}$
Substituting $x=\frac{8+2 y}{7}$ in (iii), we get
$4\left(\frac{8+2 y}{7}\right)+3 y=17$
$\Rightarrow \frac{32+8 y}{7}+3 y=17$
$\Rightarrow \frac{32+8 y+21 y}{7}=17$
$\Rightarrow 32+29 y=17 \times 7$
$\Rightarrow 29 y=119-32$
$\Rightarrow 29 y=87$
$\Rightarrow y=\frac{87}{29}=3$
Putting $\mathrm{y}=3$ in $x=\frac{8+2 y}{7}$, we get
$x=\frac{8+2 \times 3}{7}$
$=\frac{8+6}{7}$
$=\frac{14}{7}$
$x=2$
Hence, the solution of the given system of equations is $\mathrm{x}=2$ and $\mathrm{y}=3$.
30. We have,
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90-\cos 45+\cos 60^{\circ}\right)$
Now,
$\sin 90^{\circ}=\cos 0^{\circ}=1, \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}$
So by substituting above values in equation (1)
We get, $\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$=\left(1+\frac{1}{\sqrt{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)$
Now, LCM of both the product terms in the above expression is $2 \sqrt{2}$
Therefore we get,
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$=\left(\frac{1 \times 2 \sqrt{2}}{1 \times 2 \sqrt{2}}+\frac{1 \times 2}{\sqrt{2} \times 2}+\frac{1 \times \sqrt{2}}{2 \times \sqrt{2}}\right) \times\left(\frac{1 \times 2 \sqrt{2}}{1 \times 2 \sqrt{2}}-\frac{1 \times 2}{\sqrt{2} \times 2}+\frac{1 \times \sqrt{2}}{2 \times \sqrt{2}}\right)$
$=\left(\frac{2 \sqrt{2}}{2 \sqrt{2}}+\frac{2}{2 \sqrt{2}}+\frac{\sqrt{2}}{2 \sqrt{2}}\right) \times\left(\frac{2 \sqrt{2}}{2 \sqrt{2}}-\frac{2}{2 \sqrt{2}}+\frac{\sqrt{2}}{2 \sqrt{2}}\right)$
$=\left(\frac{2 \sqrt{2}+2+\sqrt{2}}{2 \sqrt{2}}\right) \times\left(\frac{2 \sqrt{2}-2+\sqrt{2}}{2 \sqrt{2}}\right)$
Now by rearranging terms in the numerator of above expression
We get,
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$=\left(\frac{2 \sqrt{2}+\sqrt{2}+2}{2 \sqrt{2}}\right) \times\left(\frac{2 \sqrt{2}+\sqrt{2}-2}{2 \sqrt{2}}\right)$
$=\frac{(2 \sqrt{2}+\sqrt{2}+2) \times(2 \sqrt{2}+\sqrt{2}-2)}{(2 \sqrt{2}) \times(2 \sqrt{2})}$
Now, by applying formula $\left[(a+b)(a-b)=a^{2}-b^{2}\right]$ in the numerator of the above expression we get,
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$=\frac{(2 \sqrt{2}+\sqrt{2})^{2}-2^{2}}{2 \times 2 \times \sqrt{2} \times \sqrt{2}}$
$=\frac{(2 \sqrt{2}+\sqrt{2})^{2}-2^{2}}{4 \times 2}$
Now, we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$
Therefore, $(2 \sqrt{2}+\sqrt{2})^{2}=(2 \sqrt{2})^{2}+2(2 \sqrt{2})(\sqrt{2})+(\sqrt{2})^{2}$
Now, by substituting the above value of $(2 \sqrt{2}+\sqrt{2})^{2}$ in equation (2)
We get, $\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45+\cos 60^{\circ}\right)$
$=\frac{\left[(2 \sqrt{2})^{2}+2(2 \sqrt{2})(\sqrt{2})+(\sqrt{2})^{2}\right]-2^{2}}{4 \times 2}$
$=\frac{[8+8+2]-4}{8}$
$=\frac{18-4}{8}$
$=\frac{14}{8}$
Now $\frac{14}{8}$ gets reduced to $\frac{7}{4}$
Therefore,
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$=\frac{7}{4}$
Hence, $\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)=\frac{7}{4}$
31. $\mathrm{r}=28 \mathrm{~cm}$ and $\theta=\frac{360}{6}=60^{\circ}$

Area of minor sector $=\frac{\theta}{360} \pi \mathrm{r}^{2}=\frac{60}{360} \times \frac{22}{7} \times 28 \times 28=\frac{1232}{3}$
$=410.67 \mathrm{~cm}^{2}$
For, Area of $\triangle \mathrm{AOB}$,

Draw $\mathrm{OM} \perp \mathrm{AB}$.
In right triangles OMA and OMB,
$\mathrm{OA}=\mathrm{OB}$ [Radii of same circle]
$\mathrm{OM}=\mathrm{OM}$ [Common]
$\therefore \triangle \mathrm{OMA} \cong \mathrm{OMB}$ [RHS congruency]
$\therefore \mathrm{AM}=\mathrm{BM}$ [By CPCT]
$\Rightarrow \mathrm{AM}=\mathrm{BM}=\frac{1}{2} \mathrm{AB}$ and $\angle \mathrm{AOM}=\angle \mathrm{BOM}=\frac{1}{2} \mathrm{AOB}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
In right angled triangle $O M A, \cos 30^{\circ}=\frac{O M}{O A}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{O M}{28}$
$\Rightarrow \mathrm{OM}=14 \sqrt{3} \mathrm{~cm}$
Also, $\sin 30^{\circ}=\frac{A M}{O A}$
$\Rightarrow \frac{1}{2}=\frac{A M}{28}$
$\Rightarrow \mathrm{AM}=14 \mathrm{~cm}$
$\Rightarrow 2 \mathrm{AM}=2 \times 14=28 \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=28 \mathrm{~cm}$
\therefore Area of $\triangle \mathrm{AOB}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}=\frac{1}{2} \times 28 \times 14 \sqrt{3}=196 \sqrt{3}=196 \times 1.7=333.2 \mathrm{~cm}^{2}$
\therefore Area of minor segment $=$ Area of minor sector - Area of $\triangle \mathrm{AOB}$
$=410.67-333.2=77.47 \mathrm{~cm}^{2}$
\therefore Area of one design $=77.47 \mathrm{~cm}^{2}$
\therefore Area of six designs $=77.47 \times 6=464.82 \mathrm{~cm}^{2}$
Cost of making designs $=464.82 \times 0.35=$ Rs. 162.68
32. Height of cone (h) $=10 \mathrm{~cm}$

Radius of cone and hemisphere (r) $=7 \mathrm{~cm}$
Slant height of cone (1) $=\sqrt{h^{2}+r^{2}}$
$\mathrm{l}=\sqrt{10^{2}+7^{2}}=\sqrt{100+49}=\sqrt{149}$
$\mathrm{l}=12.2 \mathrm{~cm}$
Volume of toy = volume of cone + volume of hemisphere
Volume of toy $=\pi r^{2} h+\frac{2}{3} \pi r^{3}$
Volume $=\pi r^{2}\left(h+\frac{2}{3} r\right)=\frac{22}{7} \times 49 \times\left(10+\frac{2}{3} \times 7\right)$
Volume $=22 \times 7 \times\left(10+\frac{14}{3}\right)=\frac{22 \times 7 \times 44}{3}$
Volume $=2258.66 \mathrm{~cm}^{3}$
Volume of toy $=\mathbf{2 2 5 8} .66 \mathbf{c m}^{3}$
Now,
Surface area of toy $=$ CSA of cone + CSA of hemisphere
Surface area $=\pi r l+2 \pi r^{2}$
Surface area $=\pi r(l+2 r)=\frac{22}{7} \times 7(12.2+14)$
Surface area $=22 \times 26.2$
Surface area $=576.4 \mathrm{~cm}^{2}$
Surface area of coloured sheet required $=576.4 \mathrm{~cm}^{2}$
33. Total number of cards in one deck of cards $=52$
\therefore Total number of outcomes $\mathrm{n}=52$
i. Let $\mathrm{E}_{1}=$ Event of getting a king of red color. So number of outcomes favourable to E_{1} and $\mathrm{m}=2[\because$ there are two kings of red color in a deck]
So, $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{m}{n}=\frac{2}{52}=\frac{1}{26}$
ii. Let $\mathrm{E}_{2}=$ Event of getting the queen of the diamond
\therefore Numbers of outcomes favourable to $\mathrm{E}_{2}=1[\because$ there is only one queen of diamond in a deck]
Hence, $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{m}{n}=\frac{1}{52}$
iii. Let $E_{3}=$ Event of getting an ace.
\therefore Number of outcomes favourable to $\mathrm{E}_{3}=4$
Hence, $\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{4}{52}=\frac{1}{13}$

