Solution

PRE-BOARD 2023-24

Class 10 - Mathematics

Section A

1. **(a)** equal

Explanation: If we assume that a and b are equal and consider a = b = k Then, HCF (a, b)= k

- LCM (a, b) = k
- 2.

(b) $x^2 - 3x - 10 = 0$

Explanation: Sum of the roots = 5 + (-2) = 3, product of roots = $5 \times (-2) = -10$.

 \therefore x² - (sum of roots) x + product of roots = 0.

Hence, $x^2 - 3x - 10 = 0$.

3.

(c) $\tan^2 A$ Explanation: $\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1+\tan^2 A}{1+\frac{1}{\tan^2 A}}$ $= \frac{1+\tan^2 A}{\frac{\tan^2 A+1}{\tan^2 A}}$ $= (1 + \tan^2 A) \left(\frac{\tan^2 A}{\tan^2 A+1}\right) = \tan^2 A$

Hence, the correct choice is tan²A.

4.

(d) $\frac{1}{9}$

Explanation: The number of possible outcomes when two dice are thrown is 36. Now, the possible outcomes of getting a product of 12 are

{(2, 6),(3, 4),(4, 3),(6, 2)}, which means the number of favourable outcome is 4. Required probability = $\frac{4}{36} = \frac{1}{9}$

5. (a) $\frac{5}{7}$

Explanation: No. of days in a leap year = 366 No. of Mondays = 52 Extra days = 366 - 52 × 7 = 366 - 364 = 2 \therefore Remaining days in the week = 7 - 2 = 5 \therefore Probability of being 52 Mondays in the leap year = $\frac{5}{7}$

6.

(c) A is true but R is false.

Explanation: Here, reason is not true.

 $\sqrt{9} = \pm 3$, which is not an irrational number.

A is true but R is false.

 (a) Both A and R are true and R is the correct explanation of A.
 Explanation: Both are correct. Reason is the correct explanation. Assertion,

 $a_n = 7 - 4n$ $d = a_{n-1} - a_n$ = 7 - 4(n + 1) - (7 - 4n) 8. (a) 3

Explanation: The number of zeroes is 3 as the graph given in the question intersects the x-axis at 3 points.

9.

(d) 10

Explanation: In \triangle ADE and \triangle ABC $\angle D = \angle B$ {Corresponding angle} $\angle E = \angle C$ {Corresponding angle} $\therefore \triangle$ ADE and \triangle ABC (by A A Similarity) $\frac{AD}{AB} = \frac{DE}{BC}$ $\frac{2}{5} = \frac{4}{X}$ $X = \frac{5 \times 4}{2} = 10$ = 10 cm

10.

(d) (x, y)

Explanation: AB =
$$\sqrt{(2x-0)^2 + (0-2y)^2}$$

= $\sqrt{4x^2 + 4y^2} = 2\sqrt{x^2 + y^2}$ units
BO = $\sqrt{(0-2x)^2 + (0-0)^2}$
= $\sqrt{4x^2} = 2x$ units
AO = $\sqrt{(0-0)^2 + (0-2y)^2}$
= $\sqrt{4y^2} = 2y$ units
Now, AB² = AO² + BO² $\Rightarrow (2\sqrt{x^2 + y^2})^2 = (2x)^2 + (2y)^2$
 $\Rightarrow 4(x^2 + y^2) = 4(x^2 + y^2)$

Therefore, triangle AOB is an isosceles right-angled triangle.

Since the coordinate of the point which is equidistant from the three vertices of a right-angled triangle is the coordinates of mid-point of its hypotenuse.

$$\therefore \text{ Mid-point of AB} = \left(\frac{0+2x}{2}, \frac{2y+0}{2}\right) = (x,y)$$

(x, y)

B (2x. 0)

11.

(b) 30°

Explanation: In the given figure, PA and PB are two tangents to the circle with centre O.

 $\angle APB = 60^{\circ}$

(0, 2y)

PAOB is a cyclic quadrilateral. $\angle APB + \angle AOB = 180^{\circ}$ OA is radius and PA is tangent $OA \perp AP \Rightarrow \angle OAP = 90^{\circ}$ PA = PB (Tangents to the circle) $\angle PAB = \angle PBA$ $But, \angle PAB + \angle PBA = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\angle PAB = \angle PBA = \frac{120}{2} = 60^{\circ}$ $\angle OAB = 90^{\circ} - 60^{\circ} = 30^{\circ}$

12.

(d) 27

Explanation:

Class	65-85	85-105	105-125	125-145	145-165	165-185	185-205
Frequency	4	5	18	20	17	7	4
Cumulative Frequency	4	9	27	47	64	71	75

Therefore, the number of athletes who completed the race in less than 125 seconds is 27.

Section B

13. -21

Explanation:

The given polynomial $f(x) = 2x^2 + x + k$ If 3 is zero of f(x) then f(3) = 0i,e. $2(3)^2 + 3 + k = 0$ $\Rightarrow 2 \times 9 + 3 + k = 0$ $\Rightarrow 18 + 3 + k = 0$ $\therefore 21 + k = 0$ $\Rightarrow k = -21$ Thus, for k = -21, 3 is a zero of the polynomial.

14.19

Explanation: Here it is given an AP where a = 72 and d = -4 Suppose the nth term = 0 T_n = a + (n - 1)d = 0 So 72 + (n - 1)(-4) = 0 72 - 4n + 4 = 0 -4n = -72 - 4 = -76 $n = \frac{-76}{-4} = 19$

Hence, the 19th term of the given AP is 0.

15.5

Explanation: According to question it is given that In $\triangle ABC$, MN || AB Therefore by Thale's theroem $\frac{MC}{AC} = \frac{NC}{BC}$ $\Rightarrow \frac{MC}{AM+MC} = \frac{NC}{BC}$ $= \frac{x}{7.5}$ (when NC = x cm) $\Rightarrow x = \frac{2 \times 7.5}{6}$ $= \frac{15}{6} = 2.5$ \Rightarrow NC = 2.5 cm Hence, BN = BC - NC = (7.5 - 2.5) cm = 5 cm

16.29

Explanation:

Point C(-1, 2) divides internally the line segment A(2, 5) and B(x, y) in the ratio 3 : 4

Then, by section formula

$$C = \left(\frac{3 \times x + 4 \times 2}{3 + 4}, \frac{3 \times y + 4 \times 5}{3 + 4}\right)$$

$$\Rightarrow (-1, 2) = \left(\frac{3x + 8}{7}, \frac{3y + 20}{7}\right)$$

$$\Rightarrow \frac{3x + 8}{7} = -1 \text{ and } \frac{3y + 20}{7} = 2$$

$$\Rightarrow 3x + 8 = -7 \text{ and } 3y + 20 = 14$$

$$\Rightarrow 3x = -15 \text{ and } 3y = -6$$

$$\Rightarrow x = -5 \text{ and } y = -2$$

$$\therefore x^2 + y^2 = (-5)^2 + (-2)^2 = 25 + 4 = 29$$

17.28

$\mathbf{F}\mathbf{v}$	nlar	natio
ĽA	Diai.	iauo

Explanation:					
Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Number of students	20	24	40	36	20
		f_0	f_1	f_2	
Modal class = 20 - 30					

$$l = 20, f_1 = 40, f_0 = 24, f_2 = 36, h = 10$$

$$Mode = l + \frac{(f_1 - f_0)}{2f_1 - f_0 - f_2} \times h$$

$$= 20 + \frac{(40 - 24)}{2(40) - 24 - 36} \times 10$$

$$= 20 + \frac{(40 - 24)}{80 - 24 - 36} \times 10$$

$$= 20 + \frac{16 \times 10}{20}$$

$$= 20 + \frac{16}{20}$$

$$= 20 + 8$$

$$= 28$$

18.60

Explanation:

Construction: Join OL OL \perp RS. Also OL = OM $\therefore \angle OML = \angle OLM$ $\Rightarrow \angle OLM = 30^{\circ}$ $\Rightarrow \angle RLM = 90^{\circ} - 30^{\circ} = 60^{\circ}$ 20. We have to find the zeroes of the quadratic polynomial $4y^2 - 15$ and verify the relationship between the zeroes and coefficient of polynomial.

Let $f(y) = 4y^2 - 15$ Compare it with the quadratic $ay^2 + by + c$. Here, coefficient of $y^2 = 4$, coefficient of y = 0 and constant term = -15. Now $4y^2 - 15 = (2y)^2 - (\sqrt{15})^2$ $= (2y + \sqrt{15})(2y - \sqrt{15})$ The zeroes of f(y) are given by f(y) = 0 $\Rightarrow (2y) + \sqrt{15})(2y - \sqrt{15}) = 0$ $\Rightarrow (2y) + \sqrt{15}) = 0$ or $(2y - \sqrt{15}) = 0$ $\Rightarrow 2y = -\sqrt{15}$ or $2y = \sqrt{15}$ $\Rightarrow y = -\frac{\sqrt{15}}{2}$ or $y = \frac{\sqrt{15}}{2}$

Hence, the zeroes of the given quadratic polynomial are $-\frac{\sqrt{2}}{2}$

Verification of relationship between zeroes and coefficients

Sum of the zeroes
$$= -\frac{\sqrt{15}}{2} + \frac{\sqrt{15}}{2} = -\frac{\sqrt{15} + \sqrt{15}}{2} = \frac{0}{2} = 0 = -\frac{15}{2}$$

 $= \frac{coefficient \ of \ y^2}{coefficient \ of \ y^2}$
Product of zeroes $= -\frac{\sqrt{15}}{2} \times \frac{\sqrt{15}}{2} = -\frac{15}{4} = \frac{constant \ term}{coefficient \ of \ y^2}$.

21. Let S_1 and S_2 be two squares. Let the side of the square S_2 be x cm in length. Then,

the side of square S_1 is (x + 4) cm.

Therefore, area of square $S_1 = (x + 4)^2$ [Because, Area = (side)²]

and, Area of square $S_2 = x^2$

It is given that

Area of square S_1 + Area of square S_2 =400 cm²

$$\Rightarrow (x+4)^2 + x^2 = 400$$

 \Rightarrow (x² + 8x + 16) + x² = 400

- $\Rightarrow 2x^2 + 8x 384 = 0$
- $\Rightarrow x^2 + 4x 192 = 0$
- $\Rightarrow x^2 + 16x 12x 192 = 0$
- \Rightarrow x(x + 16) 12(x + 16) = 0
- $\Rightarrow (x + 16) (x 12) = 0$
- \Rightarrow x = 12 or, x = -16

As the length of the side of a square cannot be negative. Therefore, x = 12.

Therefore, side of square $S_1 = x + 4 = 12 + 4 = 16$ cm and, Side of square $S_2 = 12$ cm.Hence the side of square S_1 and S_2 are 16 cm and 12 cm respectively.

22. Let first term be a and common difference be d

Given 5th term = 30 \Rightarrow a + (5 - 1)d = 30 \Rightarrow a + 4d = 30 (i) and, 12th term = 65 \Rightarrow a + (12 - 1)d = 65 \Rightarrow a + 11d = 65 (ii) Subtracting equation (i) from equation (ii) a + 11d - a - 4d = 65 - 30 \Rightarrow 7d = 35 $\Rightarrow d = \frac{35}{7} = 5$ Putting value of d in equation (i) $a + 4 \times 5 = 30$ \Rightarrow a = 30 - 20 = 10 \therefore Sum of first 20 terms $= \frac{n}{2}[2a + (n-1)d]$ $=rac{20}{2}[2 imes 10+(20-1) imes 5]$ = 10[20 + 95] $= 10 \times 115$ = 1150 Е

It is given that in $\triangle ABC$, AD, the bisector of $\angle A$ meets BC in D. To Prove $\frac{BD}{DC} = \frac{AB}{AC}$

Construction Draw $CE \parallel DA$, meeting BA produced at E.

<u>Proof:</u> Since $DA \parallel CE$, we have

 $\angle 2 = \angle 3$(alternative interior angles)

and $\angle 1 = \angle 4$ (corresponding angles)

But, $\angle 1 = \angle 2$(Because AD is bisector of $\angle A$)

$$\therefore \quad \angle 3 = \angle 4$$

So, AE = AC [since sides opposite to equal sides of a triangle are equal].

Now, in $\triangle BCE$, we have $DA \parallel CE$.

Therefore by basic proportionality theorem, we have

$$\frac{BD}{DC} = \frac{AB}{AE}$$

$$\Rightarrow \quad \frac{BD}{DC} = \frac{AB}{AC} \quad [\because AE = AC]$$
or
$$\frac{BD}{DC} = \frac{AB}{AC}$$

24. In equilateral \triangle ABC , coordinates of points A and B are (2,0) and (5,0) respectively.we have to find the co-ordinates of the other two vertices.

Let co-ordinates of C be (x, y)

Since $AC^2 = BC^2$ (sides of equilateral triangle)

$$(x - 2)^{2} + (y - 0)^{2} = (x - 5)^{2} + (y - 0)^{2}$$

or, $x^{2} + 4 - 4x + y^{2} = x^{2} + 25 - 10x + y^{2}$
or, $6x = 21$
 $x = \frac{7}{2}$
And $(x - 2)^{2} + (y - 0)^{2} = 9$
or, $\left(\frac{7}{2} - 2\right)^{2} + y^{2} = 9$
or, $\frac{9}{4} + y^{2} = 9$
or, $y^{2} = \frac{27}{4} = \frac{3\sqrt{3}}{2}$
Hence, $C = \left(\frac{7}{2}, \frac{3\sqrt{3}}{2}\right)$

25. Given radius of hemispherical ends = 18 cm Height of body (h - 2r) = 108 - 2(18) = 108 - 36 = 72 cm Curved surface area of cylinder = $2\pi r$

Let S be the total surface area of the solid. Then,

S = Curved surface area of the cylinder + Surface areas of hemispherical end

$$\begin{array}{c} \overbrace{g}^{18} \overbrace{g}^{0} \\ \xrightarrow{6} \\ \xrightarrow{8} \\ \xrightarrow$$

: Cost of polishing = Rs
$$\left(12219.42 \times \frac{7}{100}\right)$$
 =Rs. 885.36

26. We have

Class interval	Frequency (f _i)	Class mark (x _j)	$f_i x_1$
0 - 20	5	10	50
20-40	8	30	240
40-60	Х	50	50x
60-80	12	70	840
80-100	7	90	630
100-120	8	110	880
Total	$\Sigma f_i = 40 + x$	7	$\Sigma f_i x_i = 2640 + 50 x$

Here, $\Sigma f_i x_i = 2640 + 50 x$, $\Sigma f_i = 40 + x$, $ar{X} = 62.8$

$$\therefore$$
 Mean $(X) = \frac{2f_i x_i}{\Sigma f_i}$

$$\Rightarrow \quad 62.8 = \frac{2640+50x}{40+x}$$

$$\Rightarrow 2512 + 62.8x = 2640 + 50x$$

 $\Rightarrow 62.8x - 50x = 2640 - 2512$

$$\Rightarrow 12.8x = 128$$

$$\therefore \quad x = \frac{128}{12.8} = 10$$

Hence, the missing frequency is 10

27. AB is a chord of length 9.6 cm of a circle with centre O and radius 6 cm.

The tangents at A and B intersect at P. **CONSTRUCTION :** Join OP and OA. Let OP and AB intersect at M. Let PA = x cm and PM = y cm. Now, PA = PB

and OP is the bisector of $\angle APB$ [:: two tangents to a circle from an external point are equally inclined to the line segment

joining the centre to that point. Also, $OP \perp AB$ and OP bisects AB at M [:: OP is the right bisector of AB] $\therefore AM = MB = \frac{9.6}{2} cm$ = 4.8 cm.In right $\triangle AMO$, we have OA = 6cmand AM = 4.8cm. \therefore OM = $\sqrt{OA^2 - AM^2}$ $=\sqrt{6^2-4.8^2}$ $=\sqrt{12.96}$ = 3.6 cm.In right $\triangle PAO$, we have $AP^2 = PM^2 + AM^2$ $\Rightarrow x^2 = y^2 + (4.8)^2$ \Rightarrow $x^2 = y^2 + 23.04$...(i) In right $\triangle PAO$, we have $OP^2 = PA^2 + OA^2$ [Note $\angle PAO = 90^\circ$, since AO is the radius at the point of contact] \Rightarrow $(y+3.6)^2$ $=x^2+6^2$ $\Rightarrow y^2 + 7.2y + 12.96$ $= x^2 + 36$ $\Rightarrow 7.2y = 46.08$ [using (i)] $y = 6.4 \mathrm{cm}$ \Rightarrow and $x^2 = (6.4)^2 + 23.04$ = 40.96 + 23.04 = 64 $\Rightarrow x = \sqrt{64} = 8$ $\therefore PA = 8cm.$

Section D

28. Read the text carefully and answer the questions:

A man is watching a boat speeding away from the top of a tower. The boat makes an angle of depression of 60° with the man's eye when at a distance of 200 m from the tower. After 10 seconds, the angle of depression becomes 45° .

(i) In
$$\triangle$$
 ABC
tan $60^{\circ} = \frac{AB}{BC}$
 $\sqrt{3} = \frac{AB}{200}$
AB = $200\sqrt{3}$
Now, In \triangle ABD
tan $45^{\circ} = \frac{AB}{BD}$
 $1 = \frac{200\sqrt{3}}{BD}$
BD = $200\sqrt{3}$
 \therefore CD = BD - BC
 $= 200\sqrt{3} - 200$
 $= 200 (\sqrt{3} - 1)$
 $= 200 \times (1.732 - 1)$
 $= 200 \times 0.732$

= 146.4 m speed = $\frac{distance}{distance}$ time $=\frac{146.4}{10}$ = 14.64 m/s Now, speed = $14.64 \times \frac{18}{5}$ km/hr = 52.7 pprox 53 km/hr (ii) In \triangle ABD $\tan 45^\circ = \frac{AB}{BD}$ $1 = \frac{200\sqrt{3}}{BD}$ BD = $200\sqrt{3}$ m : CD = $200\sqrt{3}$ - 200 $= 200 (\sqrt{3} - 1)$ = 200 (1.732 - 1) $= 200 \times 0.732$ = 146.4 pprox 147 m : boat is at a distance of 147 m from its actual position.

(iii)In \triangle ABC

$$\tan 60^{0} = \frac{AB}{BC}$$
$$\sqrt{3} = \frac{AB}{200}$$
AB = 200 $\sqrt{3}$ m
Hence, height of tower = 200 $\sqrt{3}$ m

(iv)As boat moves away from the tower angle of depression decreases.

Section E

29. The given system of equations is

0.4x + 0.3y = 1.7(i) 0.7x - 0.2y = 0.8(ii) Multiplying both sides of (i) and (ii), by 10, get 4x + 3y = 17(iii) 7x - 2y = 8(iv) From (iv), we get 7x = 8 + 2y $\Rightarrow x = rac{8+2y}{7}$ Substituting $x = \frac{8+2y}{7}$ in (iii), we get $4\left(\frac{8+2y}{7}\right) + 3y = 17$ $\Rightarrow \frac{32+8y}{7} + 3y = 17$ $\Rightarrow rac{7}{32+8y+21y} = 17$ $\Rightarrow 32 + 29y = 17 \times 7$ $\Rightarrow 29y = 119 - 32$ $\Rightarrow 29y = 87$ $\Rightarrow y = rac{87}{29} = 3$ Putting y = 3 in $x = \frac{8+2y}{7}$, we get $x = rac{8+2 imes 3}{2}$ $= \frac{8+6}{2}$ $=\frac{14}{7}$ x = 2Hence, the solution of the given system of equations is x = 2 and y = 3. 30. We have,

 $(\cos 0^\circ + \sin 45^\circ + \sin 30^\circ) (\sin 90 - \cos 45 + \cos 60^\circ)$ (1) Now,

 $\sin 90^{\circ} = \cos 0^{\circ} = 1, \sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{\sqrt{2}}, \sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$

So by substituting above values in equation (1)

We get, $(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ})(\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ})$ = $\left(1 + \frac{1}{\sqrt{2}} + \frac{1}{2}\right)\left(1 - \frac{1}{\sqrt{2}} + \frac{1}{2}\right)$

Now, LCM of both the product terms in the above expression is $2\sqrt{2}$ Therefore we get,

$$\begin{aligned} &(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}) \left(\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ}\right) \\ &= \left(\frac{1 \times 2\sqrt{2}}{1 \times 2\sqrt{2}} + \frac{1 \times 2}{\sqrt{2} \times 2} + \frac{1 \times \sqrt{2}}{2 \times \sqrt{2}}\right) \times \left(\frac{1 \times 2\sqrt{2}}{1 \times 2\sqrt{2}} - \frac{1 \times 2}{\sqrt{2} \times 2} + \frac{1 \times \sqrt{2}}{2 \times \sqrt{2}}\right) \\ &= \left(\frac{2\sqrt{2}}{2\sqrt{2}} + \frac{2}{2\sqrt{2}} + \frac{\sqrt{2}}{2\sqrt{2}}\right) \times \left(\frac{2\sqrt{2}}{2\sqrt{2}} - \frac{2}{2\sqrt{2}} + \frac{\sqrt{2}}{2\sqrt{2}}\right) \\ &= \left(\frac{2\sqrt{2} + 2 + \sqrt{2}}{2\sqrt{2}}\right) \times \left(\frac{2\sqrt{2} - 2 + \sqrt{2}}{2\sqrt{2}}\right) \end{aligned}$$

Now by rearranging terms in the numerator of above expression We get,

$$\begin{array}{l} \left(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}\right) \left(\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ}\right) \\ = \left(\frac{2\sqrt{2} + \sqrt{2} + 2}{2\sqrt{2}}\right) \times \left(\frac{2\sqrt{2} + \sqrt{2} - 2}{2\sqrt{2}}\right) \\ = \frac{\left(2\sqrt{2} + \sqrt{2} + 2\right) \times \left(2\sqrt{2} + \sqrt{2} - 2\right)}{\left(2\sqrt{2}\right) \times \left(2\sqrt{2}\right)} \end{array}$$

Now, by applying formula $[(a + b)(a - b) = a^2 - b^2]$ in the numerator of the above expression we get, $(\cos 0^\circ + \sin 45^\circ + \sin 30^\circ) (\sin 90^\circ - \cos 45^\circ + \cos 60^\circ)$

$$= \frac{(2\sqrt{2}+\sqrt{2})^2 - 2^2}{2\times 2\times \sqrt{2}\times \sqrt{2}}$$
$$= \frac{(2\sqrt{2}+\sqrt{2})^2 - 2^2}{4\times 2} \dots \dots (2)$$

Now, we know that $(a + b)^2 = a^2 + 2ab + b^2$ Therefore, $(2\sqrt{2} + \sqrt{2})^2 = (2\sqrt{2})^2 + 2(2\sqrt{2})(\sqrt{2}) + (\sqrt{2})^2$ Now, by substituting the above value of $(2\sqrt{2} + \sqrt{2})^2$ in equation (2) We get, $(\cos 0^\circ + \sin 45^\circ + \sin 30^\circ) (\sin 90^\circ - \cos 45 + \cos 60^\circ)$

$$= \frac{\left[\frac{(2\sqrt{2})^{2}+2(2\sqrt{2})(\sqrt{2})+(\sqrt{2})^{2}\right]^{-2^{2}}}{4\times 2}}{\frac{8}{8}}$$

$$= \frac{18-4}{8}$$

$$= \frac{18-4}{8}$$

$$= \frac{14}{8}$$
Now $\frac{14}{8}$ gets reduced to $\frac{7}{4}$
Therefore,
 $(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}) (\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ})$
 $= \frac{7}{4}$
Hence, $(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ}) (\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ}) = \frac{7}{4}$
31. r = 28 cm and $\theta = \frac{360}{6} = 60^{\circ}$
Area of minor sector $= \frac{\theta}{360}\pi r^{2} = \frac{60}{360} \times \frac{22}{7} \times 28 \times 28 = \frac{1232}{3}$

 $= 410.67 \text{ cm}^2$

For, Area of $\triangle AOB$,

Draw OM \perp AB. In right triangles OMA and OMB,

OA = OB [Radii of same circle] OM = OM [Common] $\therefore \triangle OMA \cong OMB [RHS congruency]$ \therefore AM = BM [By CPCT] \Rightarrow AM = BM = $\frac{1}{2}$ AB and \angle AOM = \angle BOM = $\frac{1}{2}$ AOB = $\frac{1}{2} \times 60^{\circ}$ = 30° In right angled triangle OMA, $\cos 30^\circ = \frac{OM}{OA}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{OM}{28}$ \Rightarrow OM = 14 $\sqrt{3}$ cm Also, $\sin 30^\circ = \frac{AM}{OA}$ $\Rightarrow \frac{1}{2} = \frac{AM}{28}$ \Rightarrow AM = 14 cm \Rightarrow 2 AM = 2 \times 14 = 28 cm \Rightarrow AB = 28 cm $\therefore \text{ Area of } \triangle \text{AOB} = \frac{1}{2} \times \text{AB} \times \text{OM} = \frac{1}{2} \times 28 \times 14\sqrt{3} = 196\sqrt{3} = 196 \times 1.7 = 333.2 \text{ cm}^2$ \therefore Area of minor segment = Area of minor sector - Area of \triangle AOB $= 410.67 - 333.2 = 77.47 \text{ cm}^2$ \therefore Area of one design = 77.47 cm² \therefore Area of six designs = 77.47 \times 6 = 464.82 cm² Cost of making designs = 464.82×0.35 = Rs. 162.68 32. Height of cone (h) = 10 cmRadius of cone and hemisphere (r) = 7 cm Slant height of cone (l) = $\sqrt{h^2 + r^2}$ $l = \sqrt{10^2 + 7^2} = \sqrt{100 + 49} = \sqrt{149}$ l = 12.2 cmVolume of toy = volume of cone + volume of hemisphere Volume of toy = $\pi r^2 h + \frac{2}{3}\pi r^3$ Volume = $\pi r^2 \left(h + \frac{2}{3}r \right) = \frac{22}{7} \times 49 \times \left(10 + \frac{2}{3} \right)$ Volume = $22 \times 7 \times (10 + \frac{14}{3}) = \frac{22 \times 7 \times 44}{3}$ Volume = 2258.66 cm^3 Volume of toy = 2258.66 cm³ Now, Surface area of toy = CSA of cone + CSA of hemisphere Surface area = $\pi r l + 2\pi r^2$ Surface area = $\pi r(l + 2r) = \frac{22}{7} \times 7$ (12.2 + 14) Surface area= 22×26.2 Surface area = 576.4 cm^2 Surface area of coloured sheet required = 576.4 cm² 33. Total number of cards in one deck of cards = 52 \therefore Total number of outcomes n = 52 i. Let E_1 = Event of getting a king of red color. So number of outcomes favourable to E_1 and m = 2 [:: there are two kings of red

color in a deck] So, P(E₁) = $\frac{m}{n} = \frac{2}{52} = \frac{1}{26}$

ii. Let E_2 = Event of getting the queen of the diamond

 \therefore Numbers of outcomes favourable to $E_2 = 1$ [\therefore there is only one queen of diamond in a deck]

Hence, $P(E_2) = \frac{m}{n} = \frac{1}{52}$

- iii. Let E_3 = Event of getting an ace.
 - \therefore Number of outcomes favourable to $E_3 = 4$

Hence, $P(E_3) = \frac{4}{52} = \frac{1}{13}$